Structure learning in Nested Effects Models.
نویسندگان
چکیده
Nested Effects Models (NEMs) are a class of graphical models introduced to analyze the results of gene perturbation screens. NEMs explore noisy subset relations between the high-dimensional outputs of phenotyping studies, e.g., the effects showing in gene expression profiles or as morphological features of the perturbed cell. In this paper we expand the statistical basis of NEMs in four directions. First, we derive a new formula for the likelihood function of a NEM, which generalizes previous results for binary data. Second, we prove model identifiability under mild assumptions. Third, we show that the new formulation of the likelihood allows efficiency in traversing model space. Fourth, we incorporate prior knowledge and an automated variable selection criterion to decrease the influence of noise in the data.
منابع مشابه
NEMix: Single-cell Nested Effects Models for Probabilistic Pathway Stimulation
Nested effects models have been used successfully for learning subcellular networks from high-dimensional perturbation effects that result from RNA interference (RNAi) experiments. Here, we further develop the basic nested effects model using high-content single-cell imaging data from RNAi screens of cultured cells infected with human rhinovirus. RNAi screens with single-cell readouts are becom...
متن کاملA Bayesian Network View on Nested Effects Models
Nested effects models (NEMs) are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it ...
متن کاملFuzzy Hierarchical Location-Allocation Models for Congested Systems
There exist various service systems that have hierarchical structure. In hierarchical service networks, facilities at different levels provide different types of services. For example, in health care systems, general centers provide low-level services such as primary health care services, while the specialized hospitals provide high-level services. Because of demand congestion in service networ...
متن کاملGenerating structure of latent variable models for nested data
Probabilistic latent variable models have been successfully used to capture intrinsic characteristics of various data. However, it is nontrivial to design appropriate models for given data because it requires both machine learning and domainspecific knowledge. In this paper, we focus on data with nested structure and propose a method to automatically generate a latent variable model for the giv...
متن کاملProbit and nested logit models based on fuzzy measure
Inspired by the interactive discrete choice logit models [Aggarwal, 2019], this paper presents the advanced families of discrete choice models, such as nested logit, mixed logit, and probit models to consider the interaction among the attributes. Besides the DM's attitudinal character is also taken into consideration in the computation of choice probabilities. The proposed choice models make us...
متن کاملA new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy
In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2008